An Aspect Query Language Model Based on Query Decomposition and High-Order Contextual Term Associations
نویسندگان
چکیده
In information retrieval research, more and more focus has been placed on optimizing a query language model by detecting and estimating the dependencies between the query and the observed terms occurring in the selected relevance feedback documents. In this paper, we propose a novel Aspect Language Modelling framework featuring term association acquisition, document segmentation, query decomposition, and an Aspect Model for parameter optimization. Through the proposed framework, we advance the theory and practice of applying high-order and context-sensitive term relationships to information retrieval (IR). We first decompose a query into subsets of query terms. Then we segment the relevance feedback documents into chunks using multiple sliding windows. Finally we discover the higher order term associations, i.e., the terms in these chunks with high degree of association to the subsets of the query. In this process, we adopt an approach by combining the Aspect Model (AM) with the Association Rule (AR) mining. In our approach, the AM not only considers the subsets of a query as “hidden” states and estimates their prior distributions, but also evaluates the dependencies between the subsets of a query and the observed terms extracted from the chunks of a feedback document. The AR provides a reasonable initial estimation of the high-order term associations by discovering the associated rules from the document chunks. Experimental results on various TREC collections verify the effectiveness of our approach, which significantly outperforms a baseline language model and two state-of-the-art query language models namely the Relevance Model and the Information Flow model.
منابع مشابه
مدل جدیدی برای جستجوی عبارت بر اساس کمینه جابهجایی وزندار
Finding high-quality web pages is one of the most important tasks of search engines. The relevance between the documents found and the query searched depends on the user observation and increases the complexity of ranking algorithms. The other issue is that users often explore just the first 10 to 20 results while millions of pages related to a query may exist. So search engines have to use sui...
متن کاملانتخاب مناسبترین زبان پرسوجو برای استفاده از فراپیوندها جهت استخراج دادهها در حالت دیتالوگ در سامانه پایگاه داده استنتاجی DES
Deductive Database systems are designed based on a logical data model. Data (as opposed to Relational Databases Management System (RDBMS) in which data stored in tables) are saved as facts in a Deductive Database system. Datalog Educational System (DES) is a Deductive Database system that Datalog mode is the default mode in this system. It can extract data to use outer joins with three query la...
متن کاملFacilitating Query Decomposition in Query Language Modeling by Association Rule Mining Using Multiple Sliding Windows
This paper presents a novel framework to further advance the recent trend of using query decomposition and high-order term relationships in query language modeling, which takes into account terms implicitly associated with different subsets of query terms. Existing approaches, most remarkably the language model based on the Information Flow method are however unable to capture multiple levels o...
متن کاملAdapting information retrieval to query contexts
In current IR approaches documents are retrieved only according to the terms specified in the query. The same answers are returned for the same query whatever the user and the search goal are. In reality, many other contextual factors strongly influence document’s relevance and they should be taken into account in IR operations. This paper proposes a method, based on language modeling, to integ...
متن کاملQuery expansion based on relevance feedback and latent semantic analysis
Web search engines are one of the most popular tools on the Internet which are widely-used by expert and novice users. Constructing an adequate query which represents the best specification of users’ information need to the search engine is an important concern of web users. Query expansion is a way to reduce this concern and increase user satisfaction. In this paper, a new method of query expa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Computational Intelligence
دوره 28 شماره
صفحات -
تاریخ انتشار 2012